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Summary 

Studies have been conducted that propose a mechanism of action for the penetration enhancer oleic acid (OA). The normal 

intercellular lipid arrangement of the stratum corneum may be disrupted by the introduction of ‘fluid-like OA channels’ within the 

corneum lipids at physiological temperatures. 

It has previously been suggested that oleic acid 
(OA) increases membrane ‘fluidity’ by disruption 
of the intercellular lipids (Golden et al., 1987). 
More recently, it has been proposed that OA may 
be heterogeneously dispersed and not clustered 
within the lipids (Francoeur et al., 1990). These 
workers conclude that OA may act by a mecha- 
nism involving solid-fluid phase separation. 

Studies conducted within our laboratory, using 
optical microscopy, thermal and spectral analyses, 
on anhydrous extracted human epidermal (HEL), 
appear to concur with the latter proposed hy- 
pothesis. Optical thermal microscopy of HEL 
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shows an ‘apparent continuous melt’ from SO- 
70° C (see Fig. la). The addition of OA at 10% 
(w/w) indicated that at 30” C a ‘granular’ ap- 
pearance, indicative of a disruption or separation 
of the epidermal lipid aggregate, was observed (see 
Fig. lb). As the temperature was increased a fur- 
ther disruption of the lipids was evident. By 50%, 
marked ‘fluid-like channels’ were visible. One pos- 
sible explanation for this could be that in the 
crystalline structure complex lipids are arranged 
in bilayers with their fatty acyl chains extended as 
much as possible in the all-trans form to maxim&e 
dispersion force interactions (Rumsby, 1984). 
Gauche rotations, within the all-trans state have 
been shown to give a so-called 2gf kink, which in 
turn leads to a decrease in chain length and in- 
crease in volume (Trauble and Haynes, 1971). The 
kink being formed by rotation about one C-C 
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Fig. 1. Hot stage microscopy showing lipid melts for (a) extracted human epidermal lipids (left) and (b) the addition of 10% OA 

(right). 
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bond by an angle of 120” and then rotating about 
either of the two next nearest neighbouring C-C 
bonds by - 120 O. Disorder within the bilayer may 
lead to packing problems, due to this increase in 

volume, and it has been suggested that this may be 
accommodated by a decreased packing density in 
the glycerol backbone region, perhaps with the 

extra space being taken up by water (Lee, 1975). 
OA having a ‘natural kink’ of 120” due to the 

presence of a cis double bond may act in the same 

way and in the absence of water move into the 
extra space provided. Seddon (1990) has proposed 
that “ the hydrocarbon chains do not passively fill 
any volume accessible to them; rather they main- 
tain a nearly identical average conformational state 

at a given temperature, independently of the shape 
of the aggregate”. Thus fluid-like channels ob- 
served under optical microscopy could be directly 
attributable to the flow of ‘liquid’ OA into these 

openings. 
Differential scanning calorimetry (DSC) studies 

with HEL gave thermal transitions at 40.6 and 

56.6OC with enthalpies of 2.0 and 9.7 kcal/mol. 
The addition of OA (lo%, w/w) to the extracted 
lipids resulted in a reduction of the initial transi- 
tion by approx. 10°C (see Fig. 2) phase transi- 
tions being evident at 31.8 and 52.3OC with en- 
thalpies of 15 and 5.5 kcal/mol. These results are 
in good agreement with those observed by thermal 
microscopy. The transition at 31.8” C is possibly 
indicative of a major energy requirement to re- 
arrange structurally the lipid configuration within 
the bilayer, brought about by the addition of OA. 

The use of Fourier transform (FT) IR, with 
attenuated total reflectance (ATR), further con- 
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Fig. 2. DSC trace of extracted lipids and the addition of 10% 
OA. 
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Fig. 3. Spectra showing the effect of the addition of 10% OA to 
extracted human epidermal lipids. 

firms our belief that OA may be localising within 
the stratum corneum. Studies were conducted over 
a 4~-4~ cm-’ range, at a resolution of 2 cm-‘, 
utilising both HEL and human volunteers, with a 
scan period of 2-3 min (i.e. 120 scans per spec- 
trum). Concentrating on the C-H stretching region 

around 3000-2800 cm-’ the results a showed 2-3 
wavenumber shift, both in vitro and in vivo, simi- 

lar to that previously observed by Mak et al. 
(1990). Human volunteer studies gave peaks at 

2919.0 and 2851.1 cm-‘. The addition of OA 
showed shifts to 2921.5 and 2853.2 cm-‘; whereas 
HEL gave peaks at 2919.5 and 2851 cm-’ with 
the addition of OA resulting in peaks at 2922.2 
and 2853.2 cm-’ (see Fig. 3). However, the spec- 
tra for OA indicated peaks at 2922.4 and 2953.5 
cm-‘, respectively, which suggests the changes in 
C-H stretching may be attributed simply to the 
signal from OA. Recent observations by Potts 
(1990) have supported this explanation. 

We conclude from these preliminary studies 
that OA may disrupt the intercellular lipid pack- 
ing arrangement possibly by the introduction of 
fluid-like channels within the stratum corneum at 
physiological temperatures. 
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